欢迎来到应届生求职网-中国领先的大学生求职网站

[上海]英伟达半导体技术服务(上海)有限公司

(全职,发布于2018-11-01) 相关搜索
  • 工作地点:上海
  • 职位:Power Analysis and Methodology Engineer
  • 信息来源:前程无忧(51JOB)
说明:

此信息由前程无忧(51JOB)审核并发布(查看原发布网址),应届生求职网转载该信息只是出于传递更多就业招聘信息,促进大学生就业的目的。如您对此转载信息有疑义,请与原信息发布者前程无忧(51JOB)核实,并请同时联系本站处理该转载信息。

专业1:电子信息科学与技术 专业2:微电子学 职能类别:硬件工程师

Do you visualize your future at NVIDIA? WE DO!

We are now looking for a (Power Analysis and Methodology Engineer.

Power methodology/analysis team is responsible for researching power expenditures and workload efficiency to identify architectural, micro-architectural strategies to improve power efficiency of the next generation GPU and TEGRA chips.


What you’ll be doing:

  • Develop the power flow to automate the power expenditures measurement.

  • Evaluate new low-power technologies and  improve chip power efficiency on architectural level.

  • Support GPU/TEGRA RTL designers using the power flow and improve their power efficiency on micro-arch level.

  • Understand and perform block level and chip-level power analysis.


What we need to see:

  • MSEE/MSCS with experiences on ASIC related areas.

  • Familiar with advanced low power techniques and high speed clocking desired.

  • Experience in low power ASIC design/verification.

  • Programming languages: Strong Verilog (or VHDL), Strong scripting languages skills, preferred Perl,  Tcl/python/C ++ is a plus.

  • Tool Familiarity: VCS simulation tool is must, PTPX, Synopsys Design Compiler, Power Artist is a plus.


Ways to stand out from the crowd:

  • Excellent communication skills and ability to be good at teamwork.

  • Excellent English writing/speaking skills.

  • Strong Perl scripting skills

NVIDIA is widely considered to be one of the technology world’s most desirable employers. We have some of the most brilliant and talented people on the planet working for us. If you're creative and autonomous, we want to hear from you!

公司简要介绍:

公司名称:英伟达半导体技术服务(上海)有限公司 公司类型:外资(欧美) 公司介绍:NVIDIA(纳斯达克股票代码:NVDA)是一家人工智能计算公司。它在1999年发明的GPU激发了PC游戏市场的增长,重新定义了现代计算机显卡,并且对并行计算进行了革新。最近,通过将GPU作为可以感知和理解世界的计算机、机器人乃至自动驾驶汽车的大脑,GPU深度学习再度点燃了全新的计算时代——现代人工智能。